Circulating cell-free DNA has a high degree of specificity to detect exon 19 deletions and the single-point substitution mutation L858R in non-small cell lung cancer
نویسندگان
چکیده
Detection of an epidermal growth factor receptor (EGFR) mutation in circulating cell-free DNA (cfDNA) is a noninvasive method to collect genetic information to guide treatment of lung cancer with tyrosine-kinase inhibitors (TKIs). However, the association between cfDNA and detection of EGFR mutations in tumor tissue remains unclear. Here, a meta-analysis was performed to determine whether cfDNA could serve as a substitute for tissue specimens for the detection of EGFR mutations. The pooled sensitivity, specificity, and areas under the curve of cfDNA were 0.60, 0.94, and 0.9208 for the detection of EGFR mutations, 0.64, 0.99, and 0.9583 for detection of the exon 19 deletion, and 0.57, 0.99, and 0.9605 for the detection of the L858R mutation, respectively. Our results showed that cfDNA has a high degree of specificity to detect exon 19 deletions and L858R mutation. Due to its high specificity and noninvasive characteristics, cfDNA analysis presents a promising method to screen for mutations in NSCLC and predict patient response to EGFR-TKI treatment, dynamically assess treatment outcome, and facilitate early detection of resistance mutations.
منابع مشابه
Afatinib for the treatment of metastatic non-small cell lung cancer
Targeting the epidermal growth factor receptor (EGFR) in patients with non-small cell lung cancer (NSCLC) harboring sensitizing mutations in the tyrosine kinase (TKI) domain has led to a significant change in the management of this disease. The classic or sensitizing mutations are G719X mutation in exon 18, in-frame deletions or insertion of exon 19, L858R or L861Q mutation in exon 21. Approxim...
متن کاملDiagnostic Accuracy of Noninvasive Genotyping of EGFR in Lung Cancer Patients by Deep Sequencing of Plasma Cell-Free DNA.
BACKGROUND Genotyping of EGFR (epidermal growth factor receptor) mutations is indispensable for making therapeutic decisions regarding whether to use EGFR tyrosine kinase inhibitors (TKIs) for lung cancer. Because some cases might pose challenges for biopsy, noninvasive genotyping of EGFR in circulating tumor DNA (ctDNA) would be beneficial for lung cancer treatment. METHODS We developed a de...
متن کاملMonitoring EGFR T790M with plasma DNA from lung cancer patients in a prospective observational study
Use of plasma DNA to detect mutations has spread widely as a form of liquid biopsy. EGFR T790M has been observed in half of lung cancer patients who have acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI). Effectiveness of monitoring T790M via plasma DNA during treatment with EGFR-TKI has not been established as an alternative to re-biopsy. This was a prospective multicenter obse...
متن کاملEvaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study
Non invasive somatic detection assays are suitable for repetitive tumor characterization or for detecting the appearance of somatic resistance during lung cancer. Molecular diagnosis based on circulating free DNA (cfDNA) offers the opportunity to track the genomic evolution of the tumor, and was chosen to assess the molecular profile of several EGFR alterations, including deletions in exon 19 (...
متن کاملPyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC
BACKGROUND Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at lea...
متن کامل